Quantum sensing in your pocket
OLEDs can be used to map magnetic fields using magnetic resonance.
Smartphones could one day become portable quantum sensors thanks to a new chip-scale approach that uses organic light-emitting diodes (OLEDs) to image magnetic fields. Researchers from the ARC Centre of Excellence in Exciton Science at UNSW Sydney have demonstrated that OLEDs can be used to map magnetic fields using magnetic resonance. Sensing of magnetic fields has important applications in scientific research, industry and medicine. This technique is able to function at microchip scale and does not require input from a laser.


The majority of existing quantum sensing and magnetic field imaging equipment is relatively large and expensive, requiring either optical pumping from a high-powered laser or very low cryogenic temperatures. This limits the device integration potential and commercial scalability of such approaches. By contrast, the OLED sensing device prototyped in this work would ultimately be small, flexible and mass-producible. The techniques involved in achieving this are electrically detected magnetic resonance (EDMR) and optically detected magnetic resonance (ODMR). This is achieved using a camera and microwave electronics to optically detect magnetic resonance, the same physics which enables magnetic resonance imaging (MRI).
Using OLEDs for EDMR and ODMR depends on correctly harnessing the spin behaviour of electrons when they are in proximity to magnetic fields. OLEDs, which are highly sensitive to magnetic fields, are already found in mass-produced electronics like televisions and smartphones, making them an attractive prospect for commercial development in new technologies. Dane McCamey of UNSW said: “Our device is designed to be compatible with commercially available OLED technologies, providing the unique ability to map magnetic field over a large area or even a curved surface. You could imagine using this technology being added to smartphones to help with remote medical diagnostics, or identifying defects in materials.” Rugang Geng added: “While our study demonstrates a clear technology pathway, more work will be required to increase the sensitivity and readout times.” (Source: ARC / UNSW)
Link: ARC Centre of Excellence in Exciton Science, School of Physics, UNSW Sydney, Sydney, Australia
most read

The winners of the inspect award 2025
This time, with two additional categories, “SMEs” and “Artificial Intelligence,” the selection was even larger than usual. But now they have been chosen: the machine vision products of the year 2025.

Qioptiq Photonics becomes Excelitas Germany
The renaming is part of the global consolidation of the Excelitas Group.

Debra Phillips gives keynote
The NEMA President and CEO will Headline SPS Atlanta 2025 with High-Impact Keynote: “Powering the Electric Future”

Softbank acquires ABB's robotics business
The Softbank Group has reached a definitive agreement to acquire ABB's robotics business.

Process automation: slight growth in incoming orders in 2025
Incoming orders for measurement technology and process automation grew in the low single-digit percentage range worldwide between January and September 2025.






