Neues Frühwarnsystem für selbstfahrende Autos
KI erkennt potenziell kritische Verkehrssituationen sieben Sekunden im Voraus
Um künftige selbstfahrende Autos sicher zu machen, setzen viele Entwicklungen auf ausgefeilte Modelle, mit denen die Fahrzeuge das Verhalten aller Teilnehmerinnen und Teilnehmer im Straßenverkehr beurteilen können. Was aber, wenn die Modelle für manche komplexe oder unvorhergesehene Situationen aktuell noch nicht ausreichen?
Ein Team um Prof. Eckehard Steinbach, Inhaber des Lehrstuhls für Medientechnik und Mitglied des Board of Directors der Munich School of Robotics and Machine Intelligence (MSRM) der TUM, verfolgt einen neuen Ansatz. Dank Künstlicher Intelligenz (KI) kann ihr System aus vorausgegangenen Situationen lernen, in denen selbstfahrende Testfahrzeuge im realen Straßenverkehr an ihre Systemgrenzen gestoßen sind. Das sind Situationen, in welchen der Mensch wieder die Kontrolle über das Auto übernimmt – entweder, weil das Auto ihn zum Eingreifen aufgefordert hat oder weil er sich selbst aus Sicherheitsgründen dazu entschieden hat.
Mustererkennung durch RNN
Dabei erfasst die Technologie mit der Hilfe von Sensoren und Kameras die Umgebung und zeichnet den Zustand des Fahrzeugs auf, also beispielsweise den Stand des Lenkrads, die Beschaffenheit der Straße, das Wetter, die Sicht und die Geschwindigkeit. Die auf einem sogenannten rekurrenten neuronalen Netz (RNN) basierende KI lernt, aus diesen Daten Muster zu erkennen. Wird dieses Muster in einer neuen Fahrsituation wiedererkannt, weil es in der Vergangenheit unter diesen Umständen schon einmal zu einer Überforderung der automatisierten Steuerung kam, wird der Fahrer oder die Fahrerin Dank der KI frühzeitig gewarnt, dass eine potenziell kritische Situation bevorsteht.
„Um Fahrzeuge autonomer zu machen, untersuchen viele der bisherigen Methoden, was die Autos bislang vom Verkehr verstehen, und verbessern dann die Modelle, nach denen sich die Autos richten. Der große Vorteil unserer Technologie ist: Wir ignorieren völlig die Meinung des Autos und schauen stattdessen rein auf die Daten des tatsächlichen Geschehens und finden Muster“, sagt Steinbach. „Die KI entdeckt so auch potenziell kritische Situationen, die in Modellen vielleicht nicht oder noch nicht erkannt wurden. Unser System bietet damit eine Sicherheitsfunktion, die weiß, wann und wo die Autos Schwächen haben.“
Warnung bis zu sieben Sekunden im Voraus
Das Forschungsteam hat die Technologie gemeinsam mit der BMW Group und deren automatisiert fahrenden Entwicklungsfahrzeugen im öffentlichen Straßenverkehr getestet und dabei rund 2.500 Situationen, in denen die Fahrerin oder der Fahrer eingreifen mussten, ausgewertet. Die Studie ergab, dass eine Vorhersage potenziell kritischer Situationen bereits mit einer Genauigkeit von über 85 Prozent möglich ist – bis zu sieben Sekunden vor deren Eintreffen.
Datenerhebung ohne Aufwand
Voraussetzung für das Funktionieren der Technologie ist eine große Datenmenge. Schließlich kann die KI nur Erfahrungen mit der Systemgrenze erkennen und vorhersagen, die bereits gemacht wurden. Angesichts der hohen Zahl an Entwicklungsfahrzeugen würden dabei Daten quasi von allein erzeugt, sagt Studienautor Christopher Kuhn: „Jedes Mal, wenn es bei Testfahrten zu einer potenziell kritischen Situation kommt, fällt ein neues Trainingsbeispiel für uns ab.“ Die zentrale Speicherung der Daten mache es möglich, dass jedes Fahrzeug aus den Aufzeichnungen der Flotte lernen kann.
Kontakt
Technische Universität München
Lichtenbergstr. 4
85748 Garching
Bayern, Deutschland