Systems Integrator Gets the Blues - the Berries, that Is
01.11.2011 -
If you've bought blueberry muffins or bagels from your local grocery store, the berries have likely made a very long journey from the fields to your stomach. Before reaching your plate, the picked berries pass through a rigorous, multi-step inspection process that until recently utilises mechanical, optical and human methods. Once the wild blueberries are harvested by tractor, they are immediately flash-frozen and stored until the producer receives an order. Prior to inspection, the fruit passes through a series of mechanical sorting and washing procedures to separate the berries from the leaves and twigs that get picked up from the tractors. Then the berries are poured onto a gravity-based laser sorter to remove additional foreign matter before entering a manual inspection area where the berries are sorted by the plant's employees. The fruit is then shipped to customers in the food industry, not directly to the consumer.
How to Get High Quality Berries
In a plant that inspects 30,000 lbs of fruit an hour and removing 100% of the foreign matter is the primary goal, trying to improve quality control is both a necessity and a challenge.
A North American blueberry producer had such a challenge for Orus Integration, a machine-vision systems integrator in Boisbriand, Quebec. During the spring of 2003, the customer commissioned Orus to design a machine vision-based blueberry inspection system to replace its current optical-based system and eventually reduce some of the labour costs associated with the manual inspection step.
Orus Integration's team of engineers believed that a colour-based machine vision system was the way to go. "Many of our competitors offer systems with optical inspection, but those can't use colour analysis and don't generate result data," says Louis Dicaire, Project Manager at Orus Integration. "Initially, we could guarantee our system would catch 94 % of the foreign material. Our tests caught 97 %."
There is the option of adding five more Marlin cameras to this inspection system so that the berries are seen from above and below. (The current five camera configuration only allows for viewing from above.) Adding new cameras requires the addition of two more Dual Xeon machines, bringing the CPU total to ten (Fig. 1).
The System
To cover the 60-inch width of the conveyor, Orus' FL6500C system uses five colour Marlin 1394 cameras from Advanced Vision Technology Ltd., which are connected to three Matrox Meteor-II/ 1394 adapter cards. The system is powered by three Dual Xeon 3.06 GHz 1U servers and a single P4 1U client machine that acts as a Graphical User Interface (GUI). The image data is analysed by the Matrox Imaging Library (MIL); results are sent to an Omron PLC via Ethernet cable to control the reject mechanism. A white strobe LED illuminates the inspection area.
First the berries are dumped onto a vibrating conveyor whose surface is designed with “lanes” to help the berries sort themselves into single layer, facilitating inspection. Then the berries are transferred to a conveyor with a textured belt that grips the berries to bring them to rest within the first two feet of the 12-ft belt. ”The textured conveyor almost works too well!“ recalls Dicaire. The vision system is positioned over the end of the textured conveyor and captures the shoot the matter out of the path of the good berries.
Since the engineers at Orus are experienced MIL users, most of the project's challenges were mechanical: assembling components and handling the speed. Maintaining the timing for reject mechanism was vital to the mechanics and image processing, because the engineers only have a 20 ms window available for the analysis and creation of reject array. If the air jets are engaged for too long, they will direct good fruit onto the reject plate. Furthermore, the processing of each image has to take the same amount of time, regardless of the number of berries in the image; the processing of frames with more berries cannot take longer. "The number of berries per image is quite random, and we didn't want to limit the number of blobs that could be processed in a given image," explains Dicaire. "And since Matrox optimised the algorithm to separate the hue layer for MMX, the 20 ms time requirement could be met." Finally, Orus felt the project should be product independent, so the system could be easily modified for other food.
The Cream of the Crop
The first advantage the FL6500C has over its competition is speed. The system's reject mechanism is also unique; it inspects 20,000 berries/sec and relies on logic to locate and reject the bad blobs. Flexibility is also a key, since the operator has full control over the tolerances and performance for shape and colour analysis, as well as the timing of the air jets. Finally, the user can easily find out exactly how many blueberries are inspected and rejected in a given batch. No product for that industry provides such a wide array of both quantitative and qualitative results. Currently the FL6500C was developed for a specific customer. "But we wanted to ensure the system was product-independent so that we could adapt it for other food products such as coconuts or cranberries," notes Dicaire. For more information, contact Orus Integration (www.orusintegration.com).
Contact: Sarah Sookman Matrox Electric Systems Ltd. Tel. +49-(0)89-621700 ssookman@matrox.com imaging.info@matrox.com www.matroximaging.com