News

Chip-scale spectrometry using a photonic molecule

27.03.2023 - New kind of optical spectrometer to break the resolution-bandwidth limit.

The optical spectrometer plays an indispensable role in many scientific and industrial applications, such as material analysis, biological sensing, optical tomography and hyper­spectral imaging. Conven­tional benchtop spectrometers are susceptible to mechanical vibrations and are ill-suited for field deployment outside the laboratory. Integrated spectro­meters, which are built with all-solid-state photonic integrated circuits, have advantages of small size, robustness to vibrations, and potentially low cost. Nevertheless, most of the reported inte­grated spectro­meters suffer from an inherent trad-off between spectral resolution and operation bandwidth. High spectral resolution requires long optical path length to support sufficient spectral decorre­lation, which results in a smaller free-spectral range (FSR).

Now, a team of scientists, led by Hon Ki Tsang from the department of electronic engineering of the Chinese University of Hong Kong, have developed a new method that overcomes the reso­lution-bandwidth limit in chip-scale spectrometry. The proposed scheme is based on a pair of identical tunable micro-ring resonators (MRR), in which the strong inter-cavity coupling splits each resonant mode into a symmetric mode and an anti-symmetric mode. This unique behavior resembles the energy-level splitting in a two-level molecule that consists of two atoms. Interes­tingly, the mode-splitting strength is proportional to the coupling strength. As such, by engineering the dispersion of the photonic molecule, the splitting strength will vary throughout the whole bandwidth containing multiple FSRs. When simul­taneously tuning two MRRs, each wavelength channel will produce a distinct scanning trace, making it possible to reconstruct any unknown input spectrum.

In the experiment, numerous test spectra with diverse complex features are retrieved using the photonic-molecule scheme. The demons­trated spectral resolution is 40 picometers throughout a bandwidth of 100 nanometers. Remarkably, high reconstruction precision can be maintained even with the presence of thermal noises. “Our spectro­meter is a novel approach to capture a broadband spectrum with high spectral resolution. It relies solely on a pair of coupled resonators. The device has very low power consumption and is compatible with the mainstream nanophotonic fabri­cation tech­nology”, the researchers stated.

“The spectrometer is based on the mode splitting in coupled resonators. This phenomenon is analogous to the energy level splitting in a molecule with two atoms. Our design features a simple confi­guration and a small size, so that it can be densely packed with other devices. We believe that this approach has the potential to be applied in future handheld or even wearable spectro­scopic sensors”, they added. (Source: LPC-CAS)

Reference: H. Xu et al.: Breaking the resolution-bandwidth limit of chip-scale spectrometry by harnessing a dispersion-engineered photonic molecule, Light: Sci. & Appl. 12, 64 (2023); DOI: 10.1038/s41377-023-01102-9

Link: Dept. of Electronic Engineering, Chinese University of Hong Kong, Hong Kong SAR, China

Top Feature

Digital tools or software can ease your life as a photonics professional by either helping you with your system design or during the manufacturing process or when purchasing components. Check out our compilation:

Proceed to our dossier

Top Feature

Digital tools or software can ease your life as a photonics professional by either helping you with your system design or during the manufacturing process or when purchasing components. Check out our compilation:

Proceed to our dossier