22.02.2021 • News

Ultrabright dots see beyond skin deep

New polymer dots can produce low-noise images with single-molecule sensitivity.

A polymer that is custom designed to produce light that penetrates murky environ­ments has shown promise in bio­imaging trials, where it can detect nano-sized particles underneath the surface of realistic tissue models. Recent studies have demons­trated that fluorescent probes are particularly useful for bio­imaging when they radiate in the shortwave infrared (SWIR) region of the optical spectrum. Because this type of fluorescent light pene­trates deeper into biological objects without being absorbed or scattered, SWIR probes can be spotted farther into tissue than conven­tional emitters. These features have enabled SWIR probes to capture high-resolution images of structures located deep within the body, such as brain tissue, without the hazards of x-rays.

Polymers offer an alternative to semi­conductor quantum dots or...
Polymers offer an alternative to semi­conductor quantum dots or rare-earth-doped nano­particles that are unsuitable for many specimens because of their toxic side-effects. (Source: A. Serin, KAUST)

Satoshi Habuchi and his colleagues are working to improve fluorescent imaging by expanding the type of probes capable of producing SWIR radiation. Currently, most bright SWIR emitters are either semi­conductor quantum dots or rare-earth-doped nano­particles that are unsuitable for many specimens because of their toxic side-effects. On the other hand, materials that are more biocom­patible, such as organic dyes, are usually not intense enough to be seen inside tissue. To resolve this issue, KAUST researchers turned to polymers having donor-acceptor structures, a layout where electron-rich components alter­nate with electron-poor portions along a conductive molecular chain. “This distri­bution promotes charge transfer along the polymer backbone, which is a very effective way to obtain SWIR light,” explains Hubert Piwonski.

The team chose two donor-acceptor polymers with ideal charac­teristics for SWIR emission and then developed a preci­pitation procedure that fused the compounds into tiny polymer spheres, or dots, just a few nanometers wide. Optical characterizations revealed these materials had excep­tionally bright SWIR emissions that were easily spotted in biological tissue models. “Per volume, our particles have a brightness value larger than almost all other SWIR emitters reported so far,” says Habuchi. “This enabled detection of nano­meter-sized polymer dots in specimens one millimeter thick.”

In addition, the new polymer dots that fluoresce only for a nanosecond can produce low-noise images with single-molecule sensi­tivity due to high throughput detection of emitted fluorescence. The ability to visualize single probes at fast acqui­sition rates could benefit researchers looking to capture processes in tissues and organs as they happen. “There are huge opportunities for new probes and imaging moda­lities capable of addressing the dynamics of molecules in living systems, and our polymer dots are a big step toward single-particle tissue imaging,” says Piwonski. (Source: KAUST)

Reference: H. Piwonski et al.: Millimeter-Deep Detection of Single Shortwave-Infrared-Emitting Polymer Dots through Turbid Media, Nano Lett. 20, 8803 (2020); DOI: 10.1021/acs.nanolett.0c03675

Link: Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia

PhotonicsViews

PhotonicsViews September 2025 available now!

PhotonicsViews September 2025 available now!

The new issue of the PhotonicsViews is available. Read the September 2025 issue for free as PDF or E-Paper.

Award

AutomationsBest Award

AutomationsBest Award

The AutomationsBest Award is now entering its 3rd round. The award will be presented at SPS - Smart Production Solutions on 25 November 2025

most read

Photo
10.06.2025 • NewsMachine Vision

The winners of the inspect award 2025

This time, with two additional categories, “SMEs” and “Artificial Intelligence,” the selection was even larger than usual. But now they have been chosen: the machine vision products of the year 2025.