Quantum state processing with synthetic dimensions
09.01.2025 - A synthetic photonic lattice is capable of generating and manipulating quantum states of light.
A new quantum research approach uses synthetic dimensions to efficiently process quantum information. The discovery, at INRS, of a synthetic photonic lattice capable of generating and manipulating quantum states of light, offers promising prospects for a variety of applications, from quantum computing to secure quantum communication protocols. The study co-directed by Roberto Morandotti (INRS) in collaboration with teams from Germany, Italy, and Japan opens the door to cutting-edge solutions that could contribute to the realization of a system capable of processing quantum information in a simple yet powerful way.
Their work presents a method for manipulating the photonic states of light in a never-before-seen way, offering greater control over the evolution of photon propagation. This control makes it possible to improve the detection and number of photon coincidences, as well as the efficiency of the system. Central to the research team’s experiments is the concept of quantum walks. “The development of the field of quantum computing, which began some twenty years ago, has benefited greatly from the notion of quantum walks, which are known to increase the speed and complexity of computer algorithms,” explains Morandotti.
Recently, the scientific community developed another concept: synthetic photonic networks. “This work enables us to use the concept of synthetic photonics dimensions to explore many quantum phenomena at the fundamental level, and to apply them to quantum technologies,” explains INRS-postdoc Stefania Sciara. The potential of this type of lattice was already known, for example to simulate effects such as parity-time symmetry, superfluidity of light and topological structures, but using conventional technology. “But despite their potential,” she adds, “a synthetic photonic lattice capable of handling quantum states had never been demonstrated.”
This is precisely what Roberto Morandotti and his team have done. They have discovered a temporal synthetic photonic lattice capable of generating and manipulating quantum states of photons, using the concept of quantum walks in simple fiber systems. “Our team has discovered how to use synthetic photonic lattices to process quantum information, based on the quantum walks of high-dimensional photons entangled in their temporal states,” reports Morandotti. “The system doesn’t require a lot of resources, as it consists of fiber devices, which are compatible with standard telecom infrastructures.”
“Our approach is unprecedented for two reasons,” says Morandotti. “It allows better control of the evolution of quantum walks in the time domain, and it makes possible the simultaneous manipulation of classical light and entangled photons. This discovery paves the way for a variety of advanced quantum computing and information protocols on telecom-ready architectures compatible with microprocessor chips.” Several fields of fundamental physics linked to quantum information processing can benefit from the researchers’ results, including quantum computing, quantum metrology, and secure quantum communications.
“Our system is entirely based on fiber-optic devices used in the telecommunications field and can be combined with current and future telecommunications infrastructures,” says Stefania Sciara. “This discovery is proof that it is possible to realize high-performance quantum systems using devices, techniques, and infrastructures that are within reach. It also demonstrates that it is possible to use quantum networks to transmit personal data securely.” (Source: INRS)
Link: Institute of Condensed Matter Theory and Optics, Friedrich-Schiller-University, Jena, Germany • Ultrahigh Speed Light Manipulation Laboratory, Institut national de la recherche scientifique, Centre Énergie Matériaux Télécommunications, Varennes, Canada